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Letters

On the Expansion of Axial Field Components in Terms of

Normal Modes in Perturbed Waveguides

C. VASSALLO

Abstract—Arguments are proposed according to which, in the

Maxwell equations giving the axial field components, the expansion

of the transverse field components in terms of unperturbed normal

modes could bedifferentiated term by term. Thkwould be allowed

when the perturbed transverse field respects the possible nullity

conditions imposed by the boundaries of the unperturbed wave-

guide and when it has no singularity.

I. INTRODUCTION

In various problems of perturbed waveguides the Maxwell equa-

tions can be written in the following manner:

curl 8 = — {cwJR — W (1)

curl 3C = im 8 + S. (2)

( 8 and K are the unknown fields; c and p are, respectively, the per-

mittivity and the permeability of the unperturbed waveguide;

5T2 and s are magnetic and electric perturbations. ) The terms M

and g are generally functions of 8 and K. Note that the perturbation

may appear not only in the terms 3U and S, but also by a modifica-

tion of boundary conditions on the waveguide walls.

In order to solve (1) and (2), one usually expands the fields in

terms of the normal modes of the unperturbed waveguide. In the

following, we shall represent the kth of them by the components

E~h, Ezk, H~&, and H,~, with subscript T for transverse components

and z for axial ones. Then the fundamental property to be used is

the completeness of the set { (E~~, HTk) ] on the Avectors defined

over the cross section.1 It ensures the existence of the expansion:

( 8., WT) = ~ C, ( 8,,, ~Z’k) . (3)

However, nothing general is said about axial components, and

to assume 6-vector expansions of the form

(8,3C) = x c, (i.%, ww (4)

as is done in several papers [1 ]–[3 ] has no actual justification, and

often turns out to be inexact [4]. Finally, one must derive the ex-

pansion of the axial components from (3) and the Maxwell equa-

tions. For instance let us consider w,.

From (1), we have (with u. as unit vector in the z direction)

VT. (Uz x G.) = ?i@3ez+ m. (5)

This equation, applied to a normal mode, gives

VT- (UZ ~ &k) = impHsk (6)

so that (5) can be written as

VT- ~ ck (UZ X :~~) = ‘iCW & + ~z. (7)
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1 Note that as far as we know, there is no general demonstration of

such completeness. The demonstration partially exposed by Collin [1]
deals only with waveguides filled with homogeneous dielectrics. Bresler
and Marcuvitz in Research Reports R .495.56 (May 56) and R.565.57
(Mar. 57), Microwave Research Institute, Polytechnic Institute of
Brooklyn, Brooklyn, N. Y., claimed to have a general proof for closed
guides filled with anisotropic and inhomogeneous dielectrics, but we do
not know if they have published it. Further on, we never heard of such
a proof for open waveguides.

If it is possible to take derivatives of the series ~ C,E~~ term

by term, then (7) becomes

When it is done, attempts to justif y this assumption are generally

not made [5]. However, it is not always true. As a counterexample,

let us consider a perturbed waveguide with anisotropic impedance

walls

n x C%g= z.wg (9)

which becomes a usual empty waveguide with perfect metallic

walls (~ = O) in its unperturbed state. Then we have another com-

pleteness theorem and orthogonality properties for the set {HA} [6],

which allows us to transform (5) into:

r -i

L -1

where D is the cross section of the guide and r is the contour of the

cross section. This result, which does not give directly an expansion

for % but an integral equation from which such an expansion may

be obtained reduces to (8) only if ~ .3c,0 has no axial component.

This is true in some important problems like the helix waveguide

(with zero pitch) [5], but not in other cases such as the usual

waveguides with 10SSY metallic walls.

II. A CRITERION

Thus we have to be cautious with the derivation of (8). In general,

it is forbidden to differentiate a series term by term except under

rather stringent condkions. However, the situation looks better if

we admit that our series may be viewed as generalized Fourier

series [7]. (They are ordinary Fourier series in the case of a slab

waveguide. ) Then, they may be differentiated term by term in

the sense of generalized functions [8] and thus (8) will or will

not be valid in the sense of true functions accordingly as the left

member of (7) is itself a true function or only a generalized one.

If we assume that the perturbed field has no singularity this may

be deduced from the behavior of the series ~ c, &J.k over the cross

section since only the discontinuities of its sum may produ6e gen-

eralized functions (Dirac functions) by differentiation.

Let this sum be G’. Because of its physical nature and its con-

tinuity properties, the actual transverse field 2T is equal to 8T’

everywhere [7] except on the contour of the cross section where the

tangential component 8s’ is identically zero. Thus, f+’ is continuous

everywhere except on some lines A which may be either the contour

of the cross section (where &,s’ is discontinuous, unless 8,s is also

zero on the contour) or the separation lines between two different

media (where the normal component 8.’, as 8., is discontinuous).

If we call (s, n) the local tangential and normal coordinates near a

line A, we may write

(11)

Thus, we see that the discontinuous component is differentiated

along its discontinuity direction only in the case when A is the con-

tour of the cross section. Then a Dirac function appears. Nothing

similar occurs in the case of separation curves, for which there is

at most a step discontinuity.



LETTERS

Finally, the only possibility to meet a generalized function, i.e.,

the only case in which (8) fails, is when the tangential component

of the perturbed field is not zero on the contour while the unper-

turbed guide has perfect metallic walls.

Now let us consider the electric analog of (8):

This expansion will be valid or not accordingly as

(13)

contains a Dirac function. This time, neither the separation lines, nor

the contour have any effect, since for instance on the contour this

k the normal component and not the tangential one which is iden-

tically zero with only a step discontinuity. Thus expansion (12)

is always valid.

III. GENERALIZATION

In the preceding dixcuseion we have assumed that the unper-

turbed waveguide has perfect metallic walls. In the case of perfeet

magnetic walls, we must invert our conclusions on expansions (8)

and (12): (8) is always valid, while (12) fails when the perturbed

transverse magnetic field has a nonzero tangential component on

the contour. If in the unperturbed state, the walls have some finite,

nonzero surface impedance, none of the sets {E.k ] or {H,~ ) may be

identically zero on the contour, no Dirac function may occur by

the above mechanism, and the two expansions are simultaneously

valid.

Let us point out that we have assumed the perturbed field has

no singularity, which is sufficient for a number of practical cases.

However, some perturbations such as dielectric or metallic wedges

or metallic strips introduce singularities and are not covered by

our theory. For instance, in the case of a microstrip line shielded in

a rectangular waveguide, one may attempt to expand the field in

terms of normal modes of the rectangular waveguide: then one easily

finds that the expansion (12) fails.

IV. CONCLUSION

In conclusion when the perturbed field has no singularity, expan-

sions (8) and (12) would always be valid unless the perturbed field

does not respect some nullity condition imposed on the contour to

the transverse tangential electric or magnetic field in the unper-

turbed waveguide. The possible nullity conditions on axial compo-

nents would have no importance. Especially the expansions would

always be valid in the case of open waveguides which have no con-

tour. Let us recall that we have not rigorously established our

proposition; we have only suggested that a suitable extension of the

theory of generalized Fourier series might likely make it firmer,

but such a purely mathematical work is largely beyond the scope

of this letter.
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Correction to “Power Deposition in a Spherical Model of

Man Exposed to 1–20 MHz Electromagnetic Fields”

JAMES C. LIN

In the above paper,l Fig. 5 on page 794 should be as shown here

in Fig. 1. An error occurred in translating the tabulated data into

grauhic form. The corrected figure is consistent with the results

shown in Fig. 3 of the above paper.1
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Fig. 1. Maximum absorbed power densities in a man-size sphere given
by exact Mie solution and the simplified solution. Incident power
density is 1 mW/cmi.
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Correction to “Variational Solution of Integral Equations”

BRUCE H. McDONALD, MENAHEM FRIEDMAN, AND
ALVIN WEXLER

In the above paper,’ two errors have been noted. First, the proof

of positive-definiteness of the integral operator on page 239 re-

quires that the potential vanish at infinity. This condition should

have been stated just before (19b). By virtue of mirror image sym-

metries, all the examples presented satisfy this condition.

Difficulties may arise in certain two-dimensional problems be-

cause of the logarithmic Green’s function. For example, if S is a

circle of a radius a and the charge a is constant:

(Ku, u) m – u’in a.

Positive-definiteness holds only for a < 1; the form vanishes at a


