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On the Expansion of Axial Field Components in Terms of
Normal Modes in Perturbed Waveguides

C. VASSALLO

Abstract—Arguments are proposed according to which, in the
Maxwell equations giving the axial field components, the expansion
of the transverse field components in terms of unperturbed normal
modes could be differentiated term by term. This would be allowed
when the perturbed transverse field respects the possible nullity
conditions imposed by the boundaries of the unperturbed wave-
guide and when it has no singularity.

I. INTRODUCTION

In various problems of perturbed waveguides the Maxwell equa-
tions can be written in the following manner:

curl & = —iwudt — M (1)
curl 3 = (we + 4. (2)

(& and 3€ are the unknown fields; € and u are, respectively, the per-
mittivity and the permeability of the unperturbed waveguide;
M and g are magnetic and electric perturbations.) The terms M
and g are generally functions of & and 3. Note that the perturbation
may appear not only in the terms 9 and g, but also by a modifica-
tion of boundary conditions on the waveguidé walls.

In order to solve (1) and (2), one usually expands the fields in
terms of the normal modes of the unperturbed waveguide. In the
following, we shall represent the kth of them by the components
Ery, E., Hry, and H ., with subsceript T' for transverse components
and 2 for axial ones. Then the fundamental property to be used is
the completeness of the set {(Ere, Hre) ] on the 4-vectors defined
over the cross section.! It ensures the existence of the expansion:

(&7, %) = 2 Ci (8, Hopn). 3)

However, nothing general is said about axial components, and
to assume 6-vector expansions of the form

(8,3€) = > Ci (&, 3e) (4)

as is done in several papers [1]-[3] has no actual justification, and
often turns out to be inexact [47]. Finally, one must derive the ex-
pansion of the axial components from (3) and the Maxwell equa-
tions. For instance let us consider 3C,.

From (1), we have (with u, as unit vector in the z direction)

Vre (u; X &) = wpdC, + M (5)
This equation, applied to a normal mode, gives
Vre (u. X &) = twpH (6)
so that (5) can be written as

Ve 2. Cr (w0, X 8g1) = doop 3, + M. (7)
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1 Note that as far as we know, there is no general demonstration of
such completeness. The demonstration partially exposed by Collin [1]
deals only with waveguides filled with homogeneous dielectrics. Bresler
and Marcuvitz in Research Reports R.495.56 (May 56) and R.565.57
(Mar. 57), Microwave Research Institute, Polytechnic Institute of
Brooklyn, Brooklyn, N. Y., claimed to have a general proof for closed
guides filled with anisotropic and inhomogeneous dielectrics, but we do
not know if they have published it. Further on, we never heard of such
a proof for open waveguides.

If it is possible to take derivatives of the series . CpEr; term
by term, then (7) becomes

top Coll g = Gop 3. + N, (8)

When it is done, attempts to justify this assumption are generally
not made [57]. However, it is not always true. As a counterexample,
let us consider a perturbed waveguide with anisotropic impedance
walls

nX 8 =2-%y 9)

which becomes 2 usual empty waveguide with perfect metallic
walls (Z = 0) in its unperturbed state. Then we have another com-
pleteness theorem and orthogonality properties for the set {H .} [6],
which allows us to transform (5) into:

f e T30 H ]

T

// sz2d8
D

where D is the cross section of the guide and T is the contour of the
cross section. This result, which does not give directly an expansion
for 3¢, but an integral equation from which such an expansion may
be obtained reduces to (8) only if Z-3¢,, has no axial component.
This is true in some important problems like the helix waveguide
(with zero piteh) [57], but not in other cases such as the usual
waveguides with lossy metallic walls.

TopdC, + M, = Zlg 2wp Cp — H, (10)

II. A CRITERION

Thus we have to be cautious with the derivation of (8). In general,
it is forbidden to differentiate a series term by term except under
rather stringent conditions. However, the situation looks better if
we admit that our series may be viewed as generalized Fourier
series [7]. (They are ordinary Fourier series in the case of a slab
waveguide.) Then, they may be differentiated term Ry term in
the sense of generalized functions [87] and thus (8) will or will
not be valid in the sense of true functions accordingly as the left
member of (7) is itself a true function or only a generalized one.
If we assume that the perturbed field has no singularity this may
be deduced from the behavior of the series Z Cr & over the cross
section since only the discontinuities of its sum may produde gen-
eralized functions (Dirac functions) by differentiation.

Let this sum be &7'. Because of its physical nature and its con-
tinuity properties, the actual transverse field &7 is equal to &7
everywhere [77] except on the contour of the cross section where the
tangential component 8¢’ 1s identically zero. Thus, &7 is continuous
everywhere except on some lines A which may be either the contour
of the cross section (where &g’ is discontinuous, unless &g is also
zero on the contour) or the separation lines between two different
media (where the normal component &/, as &,, is discontinuous).
If we call (s, n) the local tangential and normal coordinates near a
line A, we may write

as 88
an ds

Vre (u; X &') = (11)

Thus, we see that the discontinuous component is differentiated
along its discontinuity direction only in the case when A is the con-
tour of the cross section. Then a Dirac function appears. Nothing
similar occurs in the case of separation curves, for which there is
at most a step discontinuity. ’
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Finally, the only possibility to meet a generalized function, i.e.,
the only case in which (8) fails, is when the tangential component
of the perturbed field is not zero on the contour while the unper-
turbed guide has perfect metallic walls.

Now let us consider the electric analog of (8):

twe 8, + 3, = iwe), CiEa. (12)
This expansion will be valid or not accordingly as
a3, 93¢’
Vps (4, X 8y') = - (13)
an as

contains a Dirac function. This time, neither the separation lines, nor
the contour have any effect, since for instance on the contour this
is the normal component and not the tangential one which is iden-
tically zero with only a step discontinuity. Thus expansion (12)
is always valid.

III. GENERALIZATION

In the preceding discussion we have assumed that the unper-
turbed waveguide has perfect metallic walls. In the case of perfect
magnetic walls, we must invert our conclusions on expansions (8)
and (12): (8) is always valid, while (12) fails when the perturbed
transverse magnetic field has a nonzero tangential component on
the contour. If in the unperturbed state, the walls have some finite,
nonzero surface impedance, none of the sets {Eq} or {H} may be
identically zero on the contour, no Dirac function may occur by
the above mechanism, and the two expansions are simultaneously
valid.

Let us point out that we have assumed the perturbed field has
no singularity, which is sufficient for a number of practical cases.
However, some perturbations such as dielectric or metallic wedges
or metallic strips introduce singularities and are not covered by
our theory. For instance, in the case of a microstrip line shielded in
a rectangular waveguide, one may attempt to expand the field in
terms of normal modes of the rectangular waveguide: then one easily
finds that the expansion (12) fails.

IV. CONCLUSION

In conclusion when the perturbed field has no singularity, expan-
sions (8) and (12) would always be valid unless the perturbed field
does not respect some nullity condition imposed on the contour to
the transverse tangential electric or magnetic field in the unper-
turbed waveguide. The possible nullity conditions on axial compo-
nents would have no importance. Especially the expansions would
always be valid in the case of open waveguides which have no con-
tour. Let us recall that we have not rigorously established our
proposition; we have only suggested that a suitable extension of the
theory of generalized Fourier series might likely make it firmer,
but such a purely mathematical work is largely beyond the scope
of this letter.
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Correction to “Power Deposition in a Spherical Model of
Man Exposed to 1-20 MHz Electromagnetic Fields”

JAMES C. LIN

In the above paper,! Fig. 5 on page 794 should be as shown here
in Fig. 1. An error occurred in translating the tabulated data into
graphic form. The corrected figure is consistant with the results
shown in Fig. 3 of the above paper.l
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Fig. 1. Maximum absorbed power densities in a man-size sphere given
by exact Mie solution and the simplified solution. Incident power
density is 1 mW /cm?2,
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Correction to “Variational Solution of Integral Equations”

BRUCE H. McDONALD, MENAHEM FRIEDMAN, axD
ALVIN WEXLER

In the above paper,! two errors have been noted. First, the proof
of positive-definiteness of the integral operator on page 239 re-
quires that the potential vanish at infinity. This condition should
have been stated just before (19b). By virtue of mirror image sym-
metries, all the examples presented satisfy this condition.

Difficulties may arise in certain two-dimensional problems be-
cause of the logarithmic Green’s function. For example, if Sis a
circle of a radius @ and the charge ¢ is constant:

(Ko, 6) « —otln a.

Positive-definiteness holds only for @ < 1; the form vanishes at a
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